Niveau d'étude
BAC +5
ECTS
3 crédits
Composante
Ecole d'économie de la Sorbonne (EES)
Volume horaire
18h
Période de l'année
Automne
Description
Summary: The course provides an overview of the following Machine Learning and AI models:
- Credit Scoring overview
- Feature identification: PCA and FCA
- Linear and Logistic regression
- PCA Regression
- Regularisation: Lasso, Ridge and Elastic Net
- Support Vector Machine
- Bagging and Random Forest
- Gradient Boosting
- Neural Networks and Deep Learning
- Reinforcement Learning
Professor: Bertrand Hassani (CEO - Quant AI Lab)
Student assessment: Project (in Python or R)