Composante
UFR de mathématiques et informatique (UFR27)
Volume horaire
42h
Période de l'année
Automne
Description
Objectifs: L’objectif est de connaître certaines méthodes spécifiques permettant étudier un problème d’optimisation dynamique à horizon fini ou infini, principalement 1) L’approche par conditions du premier ordre 2) l’ approche topologique pour l’existence d’uns solution ) 3) L’approche``à la Bellman.”
Contenu du cours:
1- Rappel d’optimisation, KKT.
2- Problème d’optimisation dynamique en temps fini ou infini: variable d’état, d’action (exemples en macro).
3- Cas horizon fini: équation d’Euler (condition du premier ordre), exemple de résolution. Principe de Backward induction permettant de calculer les solutions.
4- Cas horizon infini: approche topologique (sur une classe d’exemples, comment on peut définir une bonne distance pour obtenir la compacité et l’existence d’une solution).
5- Cas horizon infini: approche à la Bellman.
a) Rappels sur les espaces de Banach.
b) Théorème de point-fixe de Banach.
c) Théorème de Blackwell.
d) Opérateur de Bellman.
e) La fonction valeur d’un problème d’optimisation à horizon infini est un point-fixe de l’opérateur de Bellman, et réciproquement (sous certaines conditions).
f) Applications et exemples.